Wiki. “Shtuka” [Shtuka]

Shtuka = Hecke 调整 + Frobenius 态射

General Shtukas can be thought of as a version of motives not defined in characteristic $p$ but whose coefficient field is of characteristic $p$. — 恽之伟, Introduction to Shtukas and their Moduli

Shtuka 的模空间或模叠是志村簇函数域类比, 是函数域 Langlands 纲领中的重要角色.

L. Lafforgue used the moduli stack of rank $n$ Shtukas and their compactifications to prove the Ramanujan–Petersson conjecture and the Langlands conjecture for $\mathrm {GL}_n$ over a global function field for any $n\in\mathbb N$.

定义

Shtuka 的模空间定义为如下的拉回, 其中 $\mathrm {Hecke}^r$ 是 Hecke 叠. $$ \begin{array} {ccc} \mathrm {Sht}^r & \to & \mathrm {Bun}^r \\ \downarrow && \downarrow \\ \mathrm {Hecke}^r & \to & \mathrm {Bun}^r\times\mathrm {Bun}^r \end{array} $$ 其中右边映射是 $\mathcal E\mapsto (\mathcal E,\mathcal E^\sigma)$, $\mathcal E^\sigma:=(\operatorname{id}_X\times\operatorname{Frob}_S)^*\mathcal E$ 是沿 $S$ 的 Frobenius 态射的拉回.

换言之, $\mathrm {Sht}^r(S)$ 的对象是如下资料,

  • $X\times S$ 上的 $r$ 阶向量丛 $\mathcal E$,
  • 两个映射 $0,\infty \colon S \to X$,
  • 一个调整 $\mathcal E\hookrightarrow \mathcal E'\hookleftarrow\mathcal E''$, 满足 $\mathcal E'/\mathcal E$ 支在 $\Gamma_\infty$ (即映射 $\infty$ 的图像) 上, $\mathcal E'/\mathcal E''$ 支在 $\Gamma_0$ 上, 且这两个层在支集上为可逆层,
  • 一个同构 $\mathcal E^\sigma\simeq\mathcal E''$.

$r=1$ 时, 概形 $S$ 上的 $1$ 阶 Shtuka 相当于 $X\times S$ 上的线丛 $L$ 以及一个同构 $$ L^\sigma\otimes L^{-1}\simeq \mathcal O_{X\times S}(\Gamma_\infty - \Gamma_0). $$

性质

$\mathrm{Sht}$ 是 Deligne–Mumford 叠.