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本文是 2024 年秋给求真书院三字班同学准备的演讲, 主旨是用范畴论
的方法产生广泛的 “空间”概念. 第一节介绍 CartSp上的层作为一种广义的
流形 (CartSp 是流形 Rn 构成的范畴), 引出意象的概念. 第二节介绍 Lie 群
胚作为 CartSp 上的 2-层, 以此引出高阶意象. 第三节介绍综合微分几何的
思想, 基本概念与模型, 以及凝集意象 (cohesive topos) 的概念.
本文使用的前置知识: 范畴论 (函子, 自然变换, 群胚), 微分几何 (微分

流形), 代数拓扑 (连通分支, 同伦类).
本文中的流形是指微分流形.

1 一种广义的流形

1.1 预层

定义 1.1. 记 Mfd为流形的范畴. 范畴 CartSp是由流形 Rn (n = 0, 1, 2, · · · )
以及光滑映射构成的 Mfd 的全子范畴.

直观地说, 子范畴 CartSp 在 Mfd 中占有支配性的地位. 因为一个 n 维

流形由 Rn 到它的所有光滑映射 (以及这些映射之间的关系) 完全决定. 这
个事实导致流形范畴可以全忠实地嵌入下面定义的预层范畴.

定义 1.2. CartSp 上的预层 (以下简称预层) 是函子 CartSpop → Set, 预层的
态射是函子之间的自然变换. 记预层的范畴为 Psh(CartSp).

对于预层 X : CartSpop → Set,我们直观上将 X 视为某种空间,其在 Rn

上的取值 X(Rn) 的直观是 Rn 到 X 的所有 “光滑映射” 的集合. 这里, “光
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滑映射” 没有实际的含义, 而我们正在赋予它含义. 这个直观的道理在于, 光
滑映射 f : Rm → Rn 以及 “光滑映射” g : Rn → X (即 g ∈ X(Rn))可以 “复
合” 得到 “光滑映射” g ◦ f : Rm → X (即 f∗(g) ∈ X(Rm)). 这是说: 就 Rn

打进去的映射而言, 一个预层和一个普通流形表现得并无区别.
下面的定义说明, 普通流形可视为预层.

定义 1.3. 设 M 为流形. 定义其对应的预层为

M = HomMfd(−,M) : CartSpop → Set.

函子 M 包含了所有映射 Rm → M 以及这些映射之间的关系的信息.
由定义, M(R0) 是 M 中的点的集合, M(R1) 是 M 中的线的集合, 以此类
推.
下面命题表明存在全忠实嵌入 Mfd→ Psh(CartSp).

命题 1.4. 对于普通流形 M,N , 预层的态射 M → N 一一对应于流形的光

滑映射 M → N .

证明. 流形的光滑映射 M → N 通过复合 Rm → M → N 给出了预层的态

射 M → N .
反之, 设有预层的态射 f : M → N . 我们断言 fR0 : M(R0) → N(R0)

是光滑映射. 这只需证明对 M 的任意局部坐标卡 ϕ : Rm → M (即 ϕ ∈
M(Rm)), 都有 fR0 ◦ ϕ : Rm → N 是光滑映射.
对任意 p : R0 → Rm 考虑下图,

M(R0) N(R0)

M(Rm) N(Rm)

fR0

p∗

fRm

p∗

知 fR0(p∗ϕ) = p∗fRm(ϕ), 即 (fR0 ◦ ϕ)(p) = fRm(ϕ)(p). 这说明 fR0 ◦ ϕ =

fRm(ϕ) ∈ N(Rm) 为光滑映射.

注 1.5. 用范畴论的术语, 子范畴 CartSp ↪→ Mfd 是稠密的, 因为任何 n 维

流形都可表示为若干个 Rn 的余极限. 这个事实是存在全忠实嵌入 Mfd →
Psh(CartSp) 的本质原因.

注 1.6. 我们介绍的预层的概念符合 Grothendieck 学派的代数几何所惯用
的函子语言 (langage fonctoriel) 的思想1. 在代数几何中, 一个概形 X 可视

1EGA1 注 2.3.6
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为仿射概形范畴 Aff 上的预层, 即函子 Ring→ Set (因为范畴 Ring 与 Aff 互
为对偶); 这个函子称为 X 的点函子 (foncteur de points), 对于环 R, X(R)

的元素 (即概形的态射 Spec(R)→ X) 称为 X 的 R-点.

预层的优势在于范畴 Psh(CartSp) 具有 Mfd 没有的许多美好性质.

例 1.7. Mfd 缺少余极限. 例如 R1 ← R0 → R1 在拓扑空间范畴中的推出是

一个十字形, 它不是流形.

例 1.8. Mfd 中缺少 “映射空间”; 两个流形之间的映射空间不是流形 (映射
空间是所谓 “无穷维流形”). 在范畴论中, 对于两个对象 X,Y , 若存在对象
XY 满足如下条件, 则称之为指数对象:

Hom(Z,XY ) ' Hom(Z × Y,X).

例如集合范畴中 XY 就是 Y 到 X 的映射的集合. 但流形范畴中不存在这
种对象.

例 1.9. Psh(CartSp) 中存在所有的极限和余极限. 这是函子范畴的性质: 函
子范畴 Fun(C,D) 中的 (余) 极限相当于 “逐点” 取 D 中的 (余) 极限. 而集
合范畴 Set 中存在所有的 (余) 极限, 从而对任意范畴 C, Fun(C, Set) 也存在
所有的 (余) 极限.

例 1.10. Psh(CartSp) 中存在指数对象. 对 X,Y ∈ Psh(CartSp), 定义

XY : CartSpop → Set, XY (Rn) := HomPsh(CartSp)(Y × Rn, X).

例如任何两个流形之间的映射空间都可实现为 Psh(CartSp) 的对象, 从而这
种空间和普通流形可得到一视同仁的处理.

定义 1.11. 意象是具有有限极限, 有限余极限, 子对象分类子和指数对象的
范畴.

限于篇幅, 本文无法详细介绍这个定义中每个概念的意义, 只能举例说
明. 每个预层范畴以及每个层范畴都是一个意象, 具有上述定义中提到的范
畴论结构.

例 1.12. 集合范畴是一个意象.
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1.2 层

定义 1.13. Rn 的一个好覆盖 {fi : Ui → Rn} 是一系列开子集 Ui, 满足每个
Ui 以及其中任何有限个的交集 (只要非空) 都微分同胚于 Rn.

定义 1.14. CartSp 上的层是满足如下条件的预层 X : CartSpop → Set: 对
任意好覆盖 {fi : Ui → Rn}, 只要给定了一族相容的元素 si ∈ X(Ui) (因
为 Ui 微分同胚于 Rn, 这个记号是合理的), 就存在唯一的 s ∈ X(Rn) 使得

X(fi)(s) = si. 其中一族元素 si ∈ X(Ui) 相容是指任意两个元素 si, sj 在

X(Ui ∩ Uj) 中相容.
层条件可表述为更抽象的形式: 对任意好覆盖 {fi : Ui → Rn},

X(Rn)→ lim
(∏

i

X(Ui) ⇒
∏
i,j

X(Ui ∩ Uj)
)

为同构.

例 1.15. 对任意流形 M , 预层 M 是层. 这就是说, 光滑映射 Rn →M 可由

任何一个开覆盖 {Ui → Rn} 以及一族相容的光滑映射 Ui →M 给出.

例 1.16. 现在介绍一个有趣的层, 它叫做微分 k-形式的模空间 Ωk. 它的定
义是

Ωk(Rn) := Ωk(Rn).

这并不是在开玩笑! 左边是我们在定义这个函子取值于 Rn, 而右边是微分
几何中定义的 Rn 上 k 形式的集合. 它是层意味着微分形式可以在局部上定
义, 然后拼起来. 称 Ωk 为 “微分 k-形式的模空间” 的原因是, 流形 M 上的

微分 k-形式等同于预层的态射 M → Ωk, 等同于对每个映射 Rn → M (想
象为坐标卡) 给出 Rn 上的一个相容的 k-形式.

2 Lie 群胚与叠

2.1 寓言: 模空间与集合的缺陷

在介绍 Lie 群胚与叠之前, 为了解释其动机, 我想先讲一个故事.
计数一些东西的时候, 我们会发现两个东西之间有一个同构 x ' y, 导

致两者应该视为同一个东西. 为了修正这个问题, 我们在结果中减掉 1. 如
果发现了两个同构 x ' y ' z, 我们就要在结果中减掉 2, 以此类推. 但这样
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的做法会出现新的问题. 如果我们发现了三个同构, x ' y ' z ' x, 我们不
能在结果中减去 3, 但是这种情形好像又不能简单地等同于 x ' y ' z. 因
为这三个同构的复合会给出一个非平凡的同构 x ' x, 也即 x 的非平凡对称

性. 我们发现一个整数已经不能表示这个计数的结果了.
用数学家的行话来讲, 计数就是求某类对象的模空间 (moduli space).

如果要用整数来表示计数的结果, 把同构的对象严格地看作同一个东西, 我
们实际上求得的是模空间的连通分支的集合 π0, 而这在一些场合是不够的.
例如, 要计数 “R 上的 1 维线性空间” 这类对象, 我们知道其中任何两

个对象都是同构的. 但是假若我们认为 R 上的 1 维线性空间真的 “只有一
个”, 就无法解释 Mobius 带的存在. Mobius 带是 S1 上的丛, 虽然它在 S1

的每个点上的纤维都是 R, 但这个丛作为整体不是平凡的. 实际上, “R 上的
1 维线性空间的模空间” 应视为一个群胚, 其中唯一的对象带有 Z/2Z 的对
称性, 这体现了 R1 有一个非平凡的自同构 x 7→ −x. 这个模空间虽然是连
通的 (π0 是一个点), 但包含了非平凡的同伦信息.
如果说群描述的是一个东西的对称性, 那么群胚描述的是一些东西之间

的对称性.
希望到这里我已经说服读者把模空间由集合升级为群胚的意义.
模空间的另一个要点是, 许多模空间都是用一个 “测试空间的范畴” C

上的层来表示的, 例如上一节介绍的 CartSp 上的层. 我举一个简单的例子.
考虑 “色彩的模空间”. 假设我们暂时不知道色彩的模空间是什么. 但很明
显, 一张 n 维的图片应当是 Rn 到色彩的模空间的一个映射. 那么色彩的模
空间就可以用一个预层 X : CartSpop → Set 来表示, 其中 X(Rn) 是所有 n

维图片的集合. 一般地, 假若将层 X : Cop → Set 视为一类对象的模空间, 那
么对于 C 的对象 c, X(c) 的元素可视为 c 上这类对象的丛.
结合以上讨论, 不难想象应当有一种 “取值于群胚的层” 的概念作为更

好的模空间的概念. 于是我们就可以进入正题了.

2.2 Lie 群胚

定义 2.1. Lie 群胚是微分流形范畴中的群胚; 换言之, 它是一个群胚, 且对
象集与态射集都带有流形结构. 具体地, 一个 Lie 群胚 G 包含如下信息:

• 一个流形 G0, 称作 “对象集”;

• 一个流形 G1, 称作 “态射集”;
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• 两个映射 s, t : G1 ⇒ G0, 分别称为态射的起点和终点;

• 一个映射 c : G1×G0
G1 → G1, “态射的复合” (其中 G1×G0

G0 = {(g, g′) ∈
G1 × G1 | s(g) = t(g′)});

• 一个映射 e : G0 → G1, “恒等态射”;

• 一个映射 i : G1 → G1, “态射的逆”.

这些数据应满足与通常群胚类似的条件, 此处略去.
为了记号的简便, 我们用 s, t : G1 ⇒ G0 表示一个 Lie 群胚, 其余的信息

略去 (因为通常其余的信息是明显的).
Lie 群胚的态射 G → H 是两个光滑映射 G1 → H1, G0 → H0, 与所有结

构映射相容.

例 2.2. 设 M 为流形. 则 id, id : M ⇒ M 为 Lie 群胚. 这个 Lie 群胚中的
态射仅有每个对象的恒等态射. 我们将这个 Lie 群胚仍记为 M , 意思是它和
流形 M 在我们心目中是同一个东西. 两个流形 M,N 之间的光滑映射一一

对应于其作为 Lie 群胚的态射, 即有全忠实嵌入 Mfd→ LieGrpd.

例 2.3. 设 G 为 Lie 群. 则 G ⇒ ∗ 为 Lie 群胚. 这是只有一个对象的群胚.
我们将这个 Lie 群胚记为 BG.

例 2.4. 轨形 (orbifold) 是 “局部同构于欧氏空间在有限群作用下的商” 的
空间. 轨形等同于满足如下条件的 Lie 群胚 G.

• (s, t) : G1 → G0 × G0 是紧合映射 (proper map);

• 每个对象 x ∈ G0 的自同构群 Gx 是离散群.

轨形的例子包括

• “橄榄球”, 即 Z/n 旋转作用于 S2;

• “半平面”, 即 Z/2 反射作用于平面;

• 任何带边流形都是 Z/2 作用于其 “加倍”.
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2.3 群胚与商

群胚相比集合的优越性还可理解为, 它更好地表达了 “商” 的概念.

定义 2.5. 设 S 为集合, G 为群, G 右作用于 S. 考虑一个群胚, 其对象集为
S, 态射为

Hom(s, t) = {g ∈ G | s · g = t}.

称这个群胚为作用群胚, 记为 S//G.

群胚 S//G 的 π0 是朴素的商集 S/G. 我们看到, S//G 比 S/G 保留了

更多的信息.
在流形范畴中, 以 Lie 群胚表示的 “商” 的概念显得更加重要, 因为一个

流形 M 在 Lie 群 G 的作用之下, 朴素的商 M/G 甚至不一定是流形, 但总
存在相应的 Lie 群胚 M//G.

定义 2.6. 设 M 为流形, G 为 Lie 群, G 通过映射 ρ : M ×G→ M 右作用

于 M . 定义其作用 Lie 群胚为

M//G := (π1, ρ) : M ×G ⇒ M.

对任意流形 N , Lie 群胚同态 M//G→ N (其中 N 视为 Lie 群胚) 一一
对应于 G-不变的映射 M → N . 这说明 M//G 表现得确实像一个商.

例 2.7. 设 G 为 Lie 群, 则
BG ' ∗//G.

2.4 主丛

BG 和 G-主丛的分类空间有关.

定义 2.8. 设 M 为流形, G 为 Lie 群. 定义 M 上的一个 G-主丛为纤维丛
p : P →M , 带有右作用 ρ : P ×G→ P , 使得存在开覆盖 M =

∪
Ui, 其在每

个 Ui 上的限制 P |Ui
同构于平凡丛 Ui ×G, 且该同构保持 G-右作用.

定义 2.9. 对于流形 M 的开覆盖 {Ui}, 定义 Lie 群胚 C({Ui}) 为⨿
i,j

(Ui ∩ Uj) ⇒
⨿
i

Ui.

(这其实是 ∞-群胚 “Čech 脉” 的青春版.)
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Lie 群胚 C({Ui}) 表现了 M 是如何由开集粘合得到.

命题 2.10. 流形 M 上的 G-主丛可由 M 的一个覆盖 {Ui} 以及 Lie 群胚态
射 C({Ui})→ BG 给出.

证明. 对于 M 的一个覆盖 {Ui}, 给一个 Lie 群胚态射 C({Ui})→ BG 相当

于对每两个指标 i, j, 给一个光滑映射 ϕij : Ui ∩ Uj → G, 并且

ϕjk ◦ ϕij = ϕik : Ui ∩ Uj ∩ Uk → G.

这正是 G-主丛所需的信息: 我们得到相应的 G-主丛

P =
(⨿

i

Ui ×G
)/

(i, x, g) ∼ (j, x, ϕij(x)g).

上述构造还可写成更抽象的形式. 定义 Lie 群胚

EG = G//G = (π1,m : G×G ⇒ G)

这个群胚每两个对象之间有唯一的同构, 因此它等价于一个点. 注意到有
Lie 群胚态射 EG → BG “忘掉 G × G 的第一分量”, 也可以理解为映射
G→ ∗ 诱导的商的映射 G//G→ ∗//G. 这个态射表现了万有 G-主丛.

取拉回
P EG

C({Ui}) BG,

即

P =
(⨿

i,j

(Ui ∩ Uj)×G ⇒
⨿
i

Ui ×G
)
.

它表现了主丛 P 被局部平凡丛粘起来的过程.

2.5 “技术性细节”: 群胚的 Morita 等价

在主丛的例子中,我们将M 上的主丛表示为 Lie群胚的态射 C({Ui})→
BG. 然而我们真正希望的是 M 上的主丛等同于 Lie 群胚的态射 M → BG.
直观上, C({Ui})与M 是等价的 (它们作为群胚确实是等价的),但我们写不
出 M 到 C({Ui}) 的 Lie 群胚态射, 因为它需要一个光滑映射 M →

⨿
i Ui,

构成满射
⨿

i Ui → M 的截面, 而这样的截面不存在. 这个现象可以表述为
流形范畴中选择公理不成立.
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这就是说, Lie 群胚的概念与我们心目中的那种对象还差了一点点 (而
普通群胚没有这个问题是拜选择公理所赐). 群胚的 Morita 等价的概念正是
为了填补这段空缺.

定义 2.11. Lie 群胚的范畴等价 G → H 是一个 Lie 群胚态射, 且

• 全忠实, 即
H1 ×H0

G0 → H0

为满浸没 (翻译成人话: H 的每个对象都同构于 G 的某个对象的像);

• 本质满, 即
G1 H1

G0 × G0 H0 ×H0

为拉回 (人话: 这个函子给出态射集的双射).

定义 2.12. 称 Lie 群胚 G,G′ Morita 等价是指存在范畴等价

H → G, H → G′.

Morita 等价是一个等价关系.

例 2.13. 对于流形 M 的覆盖 {Ui}, Lie 群胚态射 C({Ui}) → M 是范畴等

价. 因此 C({Ui}) 与 M 是 Morita 等价的.

2.6 叠

如同微分流形可推广为 CartSp 上的层, Lie 群胚也有类似的推广, 即
CartSp 上的叠, 又称 2-层2.

定义 2.14. CartSp 上的预叠 (prestack) 是指函子 CartSpop → Grpd.3

注 2.15. 预叠有两种等价的看法, 一种是如上定义的 “Grpd-取值的预层”,
另一种则是 “Psh(CartSp) 中的群胚4”. 设 X = (X1 ⇒ X0) 是 Psh(CartSp)
中的群胚, 其中 X1,X0 是 Psh(CartSp) 的对象. 那么

Rn 7→
(
X1(Rn) ⇒ X0(Rn)

)
22-层这个名字只是表达它比 “层” 高了一级, 但会引起一些误会, 因为它是取值于 1-群胚的层. 或许普

通的层 (取值于集合 = 0-群胚的层) 应该改称为 0-叠, 而取值为 1-群胚的层应称为 1-叠.
3此处两边的范畴应视为 2-范畴. 但是出于某些神秘的原因也可以将 Grpd 视为 1-范畴, 所以不熟悉高

阶范畴的读者可以安全地忽略这条注以及下面的注.
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是一个函子 CartSpop → Grpd.

例 2.16. 设 G = (G1 ⇒ G0) 是 Lie 群胚, 则对任意流形 M ,

HomMfd(M,G1) ⇒ HomMfd(M,G0)

是群胚. 特别地, G 给出了一个预叠

G : Rn 7→
(
HomMfd(Rn,G1) ⇒ HomMfd(Rn,G0)

)
.

当然, G 也可视为 Psh(CartSp) 中的群胚, 它与预叠 G 的关系如前面的注.

例 2.17. 对于 Lie 群 G, BG 作为预叠可表示为

BG : CartSpop → Grpd, Rn 7→ {Rn 上的 G-主丛}.

定义 2.18. CartSp 上的叠 (stack) 是满足 “层条件” 的预叠 X : CartSpop →
Grpd. 所谓 “层条件” 是对 Rn 的任意好覆盖 {Ui}, 如下态射为等价,

X(Rn)→ lim
( ∏

i X(Ui)
∏

i,j X(Ui ∩ Uj)
∏

i,j,k X(Ui ∩ Uj ∩ Uk)
)

其中的极限应理解为 2-范畴 Grpd 中的 2-极限.

叠的定义中 “层条件” 可展开表述如下.

• (对象的粘合) ...

• (态射的粘合) ...

注 2.19. 很明显, 叠的定义可以推广到更高阶群胚取值的层.

命题 2.20. 两个 Lie 群胚 Morita 等价当且仅当它们对应的 CartSp 上的叠
等价.

注 2.21. 两个环 Morita 等价的定义是它们的模范畴等价. 这是 Lie 群胚
Morita 等价的名称的来源.

4此处 “Psh(CartSp) 中的群胚” 的真实含义是意象 Psh(CartSp) 对应的 2-意象的对象, 也即保持极限
的 (2-) 函子 Psh(CartSp)op → Grpd. 由 Psh 的泛性质这就是函子 CartSpop → Grpd.
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3 综合微分几何

CartSp上的层能表现很多的空间,但难以表现微分几何中很重要的一类
空间——切丛. 要表现切丛, 一种聪明的思路是考虑一个 “无穷小线段” D,
于是空间 X 的切丛 TX 就是 D 到 X 的映射空间 XD.

为了让上述的直观严格化, 我们需要扩充 CartSp 这个范畴.

3.1 Weil 代数与无穷小空间

代数–几何对偶告诉我们, 一个空间和它上面的函数环相互对偶. 我们
可以用一个环来代表一个空间. 考虑一些新奇的环, 我们便得到一些新奇的
空间概念, 这是代数几何的惯用技俩.
想象实数轴 R 的原点处放着一条无穷小的线段 D. 我们规定, 对 R 上

的任何一个光滑函数 f , 只要 f 在原点处的值以及原点处的导数为零, 那么
f 在 D 上恒等于零. 当然, 这对于传统的空间概念是荒谬的 (除非 D 是一

个点). 但在代数上这件事完全合法: 我们只不过是在考虑商环

C∞(D) := C∞(R)/I, I = {f | f(0) = f ′(0) = 0}.

不难看出, 这个环也同构于 R[x]/(x2), 即 {f(x) = ax+ b | a, b ∈ R}. 这是因
为每个光滑函数 f 在商环中都等价于某个一次函数 f ′(0)x+ f(0).

D 到 M 的一个映射是什么? 由代数–几何对偶的思想, 我们希望这等
同于 C∞(M) 到 C∞(D) 的一个 R-代数同态. 考虑下图,

∗ D M

C∞(∗) ' R C∞(D) ' R[x]/(x2) C∞(M)

我们需要如下的命题.

命题 3.1. 代数同态 C∞(M)→ R 一定是取值于一个点.

... 但很遗憾, 这个命题可能是错的, 或者至少难以证明. 综合微分几何
学家的做法是把 R-代数结构扩充为所谓 “光滑代数”. 因为直观上, 普通的
R-代数结构并不能体现光滑函数的特性: 对于一个光滑函数 f , 我们希望能
够取 exp(f), sin(f), 以及任何 “光滑函数” 的操作, 而不仅是加法和乘法等
“多项式” 的操作.
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定义 3.2. 一个光滑代数 A 是一个集合, 带有如下运算: 对每个光滑函数
ϕ : Rn → Rm, 都有一个运算 A(ϕ) : An → Am, 且满足相容条件. 光滑代数
之间的同态是保持所有运算的映射.

不难发现光滑代数的定义可写成更抽象的形式.

定义 3.2 (等价表述). 光滑代数是保持有限积的函子 CartSp→ Set. 光滑代
数之间的同态是函子之间的自然变换.

一个光滑代数首先是一个 R-代数. 例如, 光滑代数 A 上的乘法由

m : R2 → R, (x, y) 7→ xy 给出. 不妨把这种新的代数想象为带有所有 “光滑”
运算的环 (相比之下普通的环仅支持多项式运算). 例如光滑代数 A 中可以

做 exp, arctan 等等所有光滑函数的操作.

例 3.3. 对光滑流形 M , C∞(M) 是光滑代数.

例 3.4. C∞(D) ' R[x]/(x2) 是光滑代数.
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