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Topos Theory is an elephant that reveals itself in a completely different way as one touches different
parts of it.

• To algebraic geometers like Grothendieck and Deligne, a topos is a space supporting exotic coho-
mologies.

• To categorical logicians W. Lawvere, M. Tierney, A. Joyal etc., a topos is the geometrical incarna-
tion of a first-order theory, or semantics for intuitionistic higher-order logic.

• To set theorists, a topos is a non-standard model of set theory (e.g. Clausen-Scholze condensed
sets).

• To homotopy theorists, a topos in the ∞-categorical setting provids a place to do homotopy theory.

This talk is an audacious attempt to sketch all the aspects of topos theory within two hours, providing
illustrative examples. In order not to make the presentation too pedantic, some definitions in formal
logic are only informally stated.

* * *

1 Toposes as generalized spaces
1.1 Categories of sheaves
Historically, the concept of toposes first appeared as a generalization of topological spaces. The category

Sh(X)

of sheaves on a topological space X satisfies some important properties, but not all categories with these
properties arise from topological spaces. Therefore it is natural to define a new kind of space by the
“category of sheaves” on it. This kind of spaces is called toposes.

What good properties does the category of sheaves have? In one word,

The category of sheaves behaves like the category of sets.

The intuition behind this fact is that a sheaf is a “parametrized family” of sets over a space, so that
constructions on sets can be performed “fiberwise” on sheaves.

The category of sets has the following properties, making it the foundation of mathematics.

• It has limits and colimits; for example

– a terminal object {∗} and an initial object ∅,
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– products X × Y and sums (i.e. disjoint unions) X + Y ,
– equalizers eq(f, g : X ⇒ Y ) and coequalizers coeq(f, g : X ⇒ Y ).

• It has exponential objects (i.e. sets of functions) Y X , such that there is a natural isomorphism

Hom(Z, Y X) ' Hom(Z ×X,Y ).

• It has a subobject classifier Ω = {⊥,>}, such that there is a natural isomorphism

{subobjects of X} ' Hom(X,Ω).

A morphism f : X → Y of topological spaces induces an adjunction

Sh(X) Sh(Y )
f∗

f∗

a

between the categories of sheaves, where f∗ preserves finite limits. This is generalized to morphisms of
toposes.

Definition 1.1.1 (topos). A topos (plural: topoi or toposes) is a category with finite limits, exponential
objects and a subobject classifier. A morphism f : C → D of toposes is an adjunction

C D
f∗

f∗

a

where f∗ preserves finite limits.

Topological spaces are not the only objects on which we can define sheaves. The most general place
where the notion of sheaves makes sense is a site, which is a category with a notion of covering. They
are an important way to construct toposes.

Definition 1.1.2 (site). A site (C, J) consists of a category C, and for every object c, a collection J(c)
of families of morphisms {fi : ci → c} called coverings of c, satisfying the following condition:

• If {fi : ci → c} is a covering of c, then for any morphism g : d→ c there exists a covering {hj : dj →
d}, such that each g ◦ hj factors through some fi.

Definition 1.1.3 (sheaves on a site). A sheaf on a site (C, J) is a presheaf

F : Cop → Set

satisfying the following sheaf condition:

• For every covering {fi : ci → c} and every compatible family (si ∈ F (ci)) (being compatible means
that whenever g : d → ci and h : d → cj are such that fig = fjh, we have F (g)(si) = F (h)(sj)),
there exists a unique s ∈ F (c) such that F (fi)(s) = si.

The category Sh(C, J) of sheaves on (C, J) is the full subcategory of Psh(C) spanned by sheaves on (C, J).

Example 1.1.4. For X a topological space, the category Open(X) of open subsets of X form a site,
where a covering {fi : Ui → U} is a collection of subset inclusions with

∪
i Ui = U . Traditional sheaves

on X are sheaves on this site.

Constructing a topos from a site (C, J) is like constructing an algebra from generators and relations:
objects of the category C are like generators, and coverings are like relations. The category Psh(C) =
Sh(C,∅) of presheaves on C is like the free algebra on the generators.

Definition 1.1.5 (Grothendieck topos). A Grothendieck topos is a category equivalent to the category
of sheaves on some site.

A classical theorem states that the definition is equivalent to the following.

Definition 1.1.6 (Grothendieck topos, alternative definition). A Grothendieck topos is a left exact
localization1 of a presheaf category.
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Grothendieck toposes are the most important class of toposes, but are not all of them2. It is a
remarkable fact, discovered by Grothendieck’s student J. Giraud, that Grothendieck toposes can also be
characterized by a small set of axioms.

Definition 1.1.7 (Giraud axioms). A category C is said to satisfy the Giraud axioms if

(0) C is presentable (i.e. cocomplete and generated under colimits by a small set of small objects);

(1) sums in C are disjoint;

(2) colimits in C are stable under pullback;

(3) epimorphisms are effective (i.e. arise as coequalizers).

Example 1.1.8. The archetypical topos is Set, the category of sets, which is also the category Sh(pt)
of sheaves on the point. Every Grothendieck topos C admits a unique morphism to Set

C Set
π∗

π∗

a
where

• π∗ is called the constant sheaf functor, and

• π∗ is called the global sections functor.

This is an analog of the fact that every topological space admits a unique map to the point.

Definition 1.1.9 (point of a topos). A point of a topos C is a morphism p : Set → E . For such a point
p,

• p∗ is called the stalk functor, and

• p∗ is called the skyscraper sheaf functor.

In a topological space the points play a dominant role; in toposes they don’t. For instance, a map
f : X → Y of topological spaces is completely determined by the value of f on the points of X; however
this is not true in toposes. In fact, there exists nontrivial toposes with no point at all!

Example 1.1.10 (A nontrivial topos without points). P. Deligne gave the following example of a non-
trivial topos without points. Let P be the partially ordered set of measurable subsets U ⊂ [0, 1] modulo
difference by a null set (i.e. U ∼ V iff U \ V and V \ U are both of measure zero). Define a covering to
be a countable collection of subsets {fi : Ui → U} whose union is equivalent to U . The topos defined by
this site is a subtopos of [0, 1], but it does not contain any point x ∈ [0, 1] because the measure of any
point is zero.

There is a notion called existence of enough points, which means isomorphy can be tested stalkwise.
However, the assumption is artificial and according to Deligne, in many cases we can do without it.

1.2 Locales
A locale is a space defined by the collection of its open subspaces, which behaves like that of a topological
space; the difference is that the definition of a locale does not involve “points”.

Definition 1.2.1 (locale). A locale X is given by a set O(X), the elements of which are called open
subspaces of X, with a partial order relation ≤ closed under finite intersections ∧ and arbitrary unions3∨
. A morphism f : X → Y of locales is a mapping f∗ : O(Y ) → O(X) that preserves finite intersections

and arbitrary unions.
1A left exact localization is a fully faithful functor with a left adjoint that preserves finite limits.
2For example, the category Fin of finite sets is a topos, but not a Grothendieck topos.
3The intersection of a family of elements {xi | i ∈ I} is the largest element y ∈ O(X) such that y ≤ xi for all i ∈ I; the

union is defined dually.
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By adjoint functor theorem a morphism f : X → Y of locales is equivalently an adjunction

O(X) O(Y )
f∗

f∗

a

where f∗ preserves finite limits. Note the similarity to morphisms of toposes.
Also by adjoint functor theorem the functor (− ∧ x) has a right adjoint; this shows that

• O(X) has an implication operation ⇒ such that

z ≤ (x⇒ y) if and only if (z ∧ x) ≤ y.

Notice the similarity to the exponential objects in a topos; yet we have used a logical operation to denote
it. This is to suggest that the collection of open subspaces behaves like the collection of propositions, or
truth values.

In some sense, locales can also be seen as a generalization of topological spaces, a “lower” analogue
which does not go as far as toposes. An open subspace of X is a “sheaf of truth values” over X. In
the view of homotopy theory, sets are 0-truncated types and propositions are (−1)-truncated types.
Therefore locales are also called 0-toposes. A locale can be turned into a topos by taking the category
of sheaves.

Definition 1.2.2 (point of a locale). Let pt be the locale with O(pt) = {⊥,>}. A point of a locale X is
a morphism p : pt → X. Equivalently a point is a map p∗ : O(X) → {⊥,>} preserving finite intersections
and arbitrary unions, and thus corresponds to a completely prime filter of O(X).

2 Toposes and logics
Logic has long been treated by mathematicians as a “foundational” area of study far away from other
branches of mathematics. For example, when encountering the term “axiom of choice”, they take it for
granted as a matter of fact, and think only the most unconventional logicians would bother to investigate
it. However, with the work of categorical logicians from late-20th century, in which toposes has played
a very important role, it became clear that

Logic is something that can be studied just like algebra.

2.1 Locales and propositional logic
Definition 2.1.1 (propositional theory, informal definition). A propositional theory T consists of

• a collection of atomic propositional symbols p, q, r, · · · ,

• a set of logical formulas called axioms.

A standard model (or just model) of a propositional theory T is an assignment of truth value to all the
atomic propositional symbols satisfying the axioms.

For X a locale, an X-model of a propositional theory T is an assignment of value in O(X) to all the
atomic propositional symbols, such that the axioms have value > ∈ O(X). A standard model is thus a
pt-model.

Example 2.1.2 (theory of real numbers). A theory TR, called the theory of real numbers, has

• for every pair of rational numbers a < b, an atomic propositional symbol pa,b;

• for every sequence of rational numbers a ≤ b < c ≤ d, an axiom (pa,c ∧ pb,d) ⇔ pb,c;

• for every rational number ε > 0, an axiom
∨

a∈Q pa−ε,a+ε.

A model of TR is a real number.

Example 2.1.3 (theory of random numbers). The topos in Example 1.1.10 is presented by a proposi-
tional theory called the theory of random numbers in [0, 1]. It has

4



• for every equivalence class of measurable subsets (i.e. events) U ⊂ [0, 1] an atomic propositional
symbol pU ;

• for every inclusion U ⊂ V an axiom pU ⇒ pV .

If this theory had a model x, then x would be a point in [0, 1] contained in any subset of measure 1,
and would be called a “random number” in [0, 1]. But no number in [0, 1] is a random number; thus the
theory has no models.

Locales are in close relation to geometric propositional theories, where we allow finite ∧ and infinite∨
in logical formulas. Such a theory T can be regarded as a presentation of a locale LT in terms of

generators and relations; the atomic symbols are the generators, and the axioms are the relations. In
this presentation, a proposition (logical formula) in T is an open subspace of LT, and logical operations
∧,

∨
correspond to finite intersections and arbitrary unions of open subspaces.

A crucial observation is that a model of T corresponds to a point of the locale LT; more generally,
an X-model of the theory is a morphism of locales X → LT. For example the theory of real numbers
present the locale R of real numbers, and a model is a point of R, while an X-model is a morphism of
locales X → R.

An X-model of a theory T can be interpreted as a family of models parametrized by X, or a model
of T internal to X. The identity of the locale LT corresponds to the generic model of T, and every other
model is a pullback of it.

Definition 2.1.4 (deduction system of geometric propositional logic). Any type of logic has an associated
deduction system, which is a set of rules defining the ways we can derive new propositions from existing
ones. The deduction system of geometric propositional logic consists of the following rules.

• (truth) We have φ⇒ >.

• (falsehood) We have ⊥ ⇒ φ.

• (finite conjunction introduction) Given φ⇒ ψ and φ⇒ χ, we can derive φ⇒ (ψ ∧ χ).

• (finite conjunction elimination) We have (φ ∧ ψ) ⇒ φ and (φ ∧ ψ) ⇒ ψ.

• (infinite disjunction introduction) For any set {φi}i∈I of formulas we have φi0 ⇒
∨

i∈I φi.

• (infinite disjunction elimination) For any set {φi}i∈I of formulas, if for each i is given φi ⇒ χ, we
have

∨
i∈I φi ⇒ χ.

• (distributivity) For any set {φi}i∈I of formulas we have ψ ∧ (
∨

i∈I φi) ⇔
∨

i∈I(ψ ∧ φi).

Note that the law of excludded middle is not present; there is no rule saying that we can always derive
φ ∨ ¬φ (where ¬φ means φ ⇒ ⊥). Moreover, we cannot derive it from the other rules, because there
exists a theory in which this rule fails.

Example 2.1.5 (theory where the LEM fails). In a topological space X viewed as a theory in geometric
propositional logic, an open subset U is a proposition, and the negation ¬U is the largest open subset V
such that U ∧V = ⊥; in other words, ¬U is the interior of the complement of U . Therefore U ∨¬U = >
holds if and only if U is clopen.

A propositional theory can be consistent (i.e. cannot derive the contradiction ⊥) while having no
models, just like a locale can be nontrivial while having no points.

So far we have seen a clear ongoing analogy between logic and algebra:
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Logic Ring theory
propositional theory ring (presented as quotient of polynomial ring)
atomic symbol generator of ring
logical formula element of ring
logical operations ∧,∨ algebraic operations ×,+
deduction system algebraic laws
axioms relations (system of polynomial equations)
locale presented by propositional theory spectrum of ring
point of locale (prime filter) point of spectrum (prime ideal)
model of theory solution of system of polynomial equations
standard model of theory closed point (field-valued point)
inconsistent theory (> = ⊥) zero ring (1 = 0)
making assumption taking localization
... ...

2.2 First-order logic and categorical semantics
Mathematical language is the tool of our mathematical reasoning, but seldom the object of our study.
Ordinary mathematical language is the reasoning in the category Set, and it is believed that nothing
can be said unless they are converted into something in this category4. However, an important insight
of categorical logic is that,

A language can be interpreted in any category with sufficient structures.

Moreover, all theorems we may derive using a language is automatically true in any category with
sufficient structures to interprete it. This is called categorical semantics.

Example 2.2.1 (interpretation of logical formula). This example shows how logical formulas are inter-
preted in categories.

• For maps f, g : X → Y , the formula

{x ∈ X | f(x) = g(x)}

is interpreted as the equalizer eq(f, g) in a category having equilizers.

• For a binary relation R ↪→ X × Y the formula

{x ∈ X | ∃y R(x, y)}

is interpreted as the image of R under the projection π1 : X×Y → X, which is the largest subobject
of X through which R ↪→ X×Y → X factors. Interpretation of this formula requires the existence
and well-behavedness of images in the category, and a topos is a good enough category for this.

• For a binary relation R ↪→ X × Y the formula

{x ∈ X | ∀y R(x, y)}

is interpreted as the largest subobject U ↪→ X such that π∗
1U ≤ R. Again this structure exists in

any topos.

• The axiom of choice

∀f ∈ Y X
(
(∀y ∈ Y ∃x ∈ X f(x) = y) ⇒ ∃s ∈ XY f ◦ s = idY

)
can be interpreted in any topos. Even if we take it for granted in the topos Set, it is easy to
construct a topos that does not satisfy this axiom5.

Definition 2.2.2 (first-order theory, informal definition). A first-order theory T consists of
4For example, even in formulations of ∞-category theory people use concepts like simplicial sets and model structures

which ultimately reduce to set-theoretical notions.
5Consider the topos Sh(S1) of sheaves on the circle. The nontrivial two-fold covering of S1 is a surjection to the terminal

object that does not have a section.
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• a collection of types A,B,C, · · · ;

• a collection of function symbols f, g, h, · · · , each of the form f : A1 × · · · ×An → B (when n = 0 it
is also called a constant symbol and denoted f ∈ B);

• a collection of relation symbols R,S, · · · , each of the form R ↪→ A1 × · · · × An (when n = 0 it is
also called an atomic proposition);

• a set of logical formulas called axioms.

A model of T in a category C is an assignment of

• an object [[A]] to every type A,

• a morphism [[f ]] : [[A1]]× · · · × [[An]] → [[B]] to every function symbol f : A1 × · · · × An → B, and

• a subobject [[R]] ↪→ [[A1]]× · · · × [[An]] to every relation symbol R ↪→ A1 × · · · × An,

satisfying the axioms.

Example 2.2.3 (theory of groups). The theory of groups TGrp can be given by

• a type G;

• three function symbols e ∈ G (identity), i : G→ G (inverse) and m : G2 → G (multiplication);

• the axioms

– m(x, e) = m(e, x) = x (identity),
– m(x,m(y, z)) = m(m(x, y), z) (associativity),
– m(x, i(x)) = m(i(x), x) = e (inverse).

A model of TGrp in Set is an ordinary group. A model of TGrp in the category Mfd of manifolds is a Lie
group.

Just like a propositional theory is a presentation of a locale, a first-order theory can be regarded as
a presentation of a topos called the classifying topos. This presentation is achieved by first constructing
the syntactic site, a site encoding the syntax of the first-order theory.

Example 2.2.4 (syntactic site of groups). As a rudimentary example, we describe the syntactic site of
groups CGrp. An object of this category has the form

〈x1, · · · , xn | ϕ(x1, · · · , xn)〉

where ϕ is a finite conjunction (s1 = t1) ∧ · · · ∧ (sn = tn) of formulas in the theory of groups. Note that
a formula in this case is just an equation s = t of two terms, and a term is inductively defined as follows,

• the constant e is a term;

• a single variable x, y, z, etc. is a term;

• if s, t are terms, then m(s, t), i(t) are terms.

A morphism of the syntactic site is a substitution of variables that respects the formulas. For example,
there is a morphism

〈x〉 → 〈y, z | y2 = z3〉

given by the substitution
y = x3, z = x2.

In general, a morphism

f : 〈x1, · · · , xn | ϕ(x1, · · · , xn)〉 → 〈y1, · · · , ym | ψ(y1, · · · , ym)〉

is a substitution of variables
yi = fi(x1, · · · , xn) (i = 1, · · · ,m)

7



such that, from ϕ(x1, · · · , xn), one may deduce ψ(f1, · · · , fm) in the theory of groups. Intuitively, a
morphism is a map between abstract “sets of solutions” of polynomial equations, although we are not
actually solving equations in any specific set. Another description of the category CGrp is that it is dual
to the category Grpfp of finitely presented groups, and the morphism in the above example is dual to the
morphism of finitely presented groups

〈y, z | y2 = z3〉 → 〈x〉, y 7→ x3, z 7→ x2.

There are no nontrivial coverings in this site, but for theories with more logical structures like ∨ or ∃, we
will need a notion of covering. (For example in the theory of fields we have an axiom x = 0 ∨ ∃y xy = 1,
and we should demand that 〈x | x = 0〉 and 〈x | ∃y xy = 1〉 together cover the object 〈x〉 in the syntactic
site of fields.)

The syntactic site of groups has the universal property that for any category D with finite limits, a
group in D (i.e. a model of TGrp in D) is equivalent to a finite-limit-preserving functor

CGrp → D.

The idea is that, given a group G in D we may construct objects like

{(y, z) ∈ G2 | y2 = z3}

using finite limits in the category D; this gives a finite-limit-preserving functor CGrp → D. The multipli-
cation G×G→ G is recovered from the morphism

〈x, y〉 → 〈z〉, z = xy.

The data of such a functor contains, in a coordinate-free manner, exactly what is required for a group.

Example 2.2.5 (classifying topos of groups). The classifying topos of groups can be constructed as
the presheaf topos Psh(CGrp) over the syntactic site of groups. It has the universal property that for
any cocomplete topos E , a group in E is equivalent to a morphism of toposes f : E → Psh(CGrp), where
f∗ : Psh(CGrp) → E is the extension by colimits6 of the finite-limit-preserving functor CGrp → E .

The classifying topos of groups may be thought of as the moduli space M of groups. To illustrate
this idea we can consider the sheaf topos Sh(X) on a space X. A group G in Sh(X) is a sheaf of groups
on X, a “continuously varying family of groups” over X (indeed, for every point p : pt → X there is an
ordinary group p∗G which is the value of the family at the point p). The property of the classifying
topos says that the group G is classified by some morphism X → M. Therefore it is intuitive to think
of M as the “space of all groups” and the map X → M as an assignment of a group to each point of X.
As with all moduli spaces, there is a generic model, the universal group over M whose pullbacks give all
groups in all toposes.

Example 2.2.6 (classifying topos of a discrete group). This example given in [4] relates the concept of
classifying toposes to the classical notion of classifying spaces of groups. Let G be a discrete group (in
Set). In topology we know that, at least in good cases, isomorphism classes of principal G-bundles on
X are in bijection with homotopy classes of maps X → BG, where BG is the classifying space of G. In
category theory, the symbol BG is used to denote something different but related: we use BG to denote
the category with only one object ∗ and hom-set Hom(∗, ∗) ' G. Presheaves on BG are equivalently
G-sets, i.e. sets with a right G-action.

It can be shown that for any topos X , isomorphism classes of “principal G-bundles” on X are in
bijection with morphisms of toposes X → Psh(BG). By definition, a “principal G-bundle” (also called a
G-torsor) on X is a model for the theory with

• A type T ,

• a function symbol ρg : T → T for every g ∈ G,

• (T is inhabited) an axiom ∃x ∈ T ,

• (the action is free) an axiom ρgx 6= ρhx for every pair of distinct elements g, h ∈ G, and

• (the action is transitive) an axiom
∨

g∈G ρgx = y.

A G-torsor in the sheaf topos Sh(X) over a space X is just a principal G-bundle over X.
6The presheaf category Psh(C) is the free cocompletion of C, meaning that for any cocomplete category D, a functor

C → D extends uniquely to a colimit-preserving functor Psh(C) → D.
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2.3 Internal language of topos
Definition 2.3.1 (internal language of category, informal definition). To any category C with suitable
structures we can associate a first-order language called the internal language of C, it has

• objects of C as types,

• morphisms f : X → Y in C as function symbols,

• subobjects R ↪→ X in C as relation symbols.
The fact that toposes behave like the category of sets means that a large part of the ordinary

theory of sets, which we use throughout mathematics to reason about mathematical structures, can
actually be interpreted internal to any topos. We may talk about objects and morphisms, definitions
and constructions, propositions and proofs, almost everything in mathematics as if we are working in
the category of sets.
Example 2.3.2. The use of internal language clarifies many constructions in algebraic geometry. Recall
that the category of schemes is a subcategory of the topos

Psh(Aff) ' Fun(Ring, Set),

and an important object is the affine line A1 = specZ[x], the forgetful functor Ring → Set.
Using the internal language of this topos, we can define some objects like

{(x, y, z) ∈ (A1)3 | xn + yn = zn}

which is the functor Ring → Set given by

R 7→ {(x, y, z) ∈ R3 | xn + yn = zn};

this turns out to be the Fermat scheme specZ[x, y, z]/(xn + yn − zn).
The multiplicative group Gm can be defined by

{x ∈ A1 | ∃y xy = 1}.

The 1-dimensional projective space P1 can be defined by

{(x, y) ∈ (A1)2 | x 6= 0 ∨ y 6= 0}
/
∼,

where ∼ is the equivalence relation where (x, y) ∼ (x′, y′) if and only if ∃λ ∈ A1 (x′, y′) = λ(x, y).
Roughly speaking, there are two flavors of toposes (although there is no logical distinction between

them):
• a petit topos (small topos) is a topos regarded as a generalized space (whose objects are sheaves on

this generalized space), while

• a gros topos (big topos) is a topos whose objects are regarded as generalized spaces.
The previous example is a gros topos, while the next example is a petit topos.
Example 2.3.3. For a schemeX, the internal language of the topos Sh(X) also simplifies various notions
in algebraic geometry. For example the structure sheaf OX is just a local ring. A sheaf of OX -module is
finite type if and only if, from the internal perspective, it is a finitely generated OX-module. If in a short
exact sequence of sheaves of OX -modules the two outer ones are of finite type, then the middle one is
too. In this manner ([1]),

Any intuitionistically valid theorem about modules yields a theorem about sheaves of modules.
Example 2.3.4. The internal language of certain gros toposes help formulating theories involving
“infinite-dimensional objects” like the space of fields in physics ([2]). Physical field configurations Φ
are maps from a spacetime manifold X to some coefficient space F , so that the space of fields is not an
ordinary manifold. However it can be seen as an object of the gros topos Sh(Mfd) where the “mapping
space” from any object to any other object is again an object in the topos. We can then study differential
forms etc. on this mapping space as if it were an ordinary manifold.

Mfd is the site given by open covering of manifolds. Define the moduli space of differential k-forms
Ωk by the presheaf

M 7→ Ωk(M),

and call a map X → Ωk in Sh(Mfd) a differential k-form on X.
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Example 2.3.5 (Continuum Hypothesis). One of the most famous works done using ideas from topos
theory is the proof of the independence of the Continuum Hypothesis by P. Cohen in the 1960s. The
hypothesis states that

• There is no cardinality between N and 2N.

This statement can be interpreted in the internal logic of any Boolean topos, that is, one where the law
of excludded middle holds true. Cohen did the following: begin with a very large cardinal κ > 2N, define
a Boolean topos which could serve as a model of set theory, and in which

N < 2N < κ ≤ 2N,

thus violating the Continuum Hypothesis, showing that it cannot be derived from the axioms of set
theory.

3 ∞-toposes and homotopy theory
In the same way that a topos is a category in which we can do set theory, an ∞-topos is an ∞-category
in which we can do homotopy theory; we can perform in an ∞-topos everything we do on spaces,
taking homotopy groups and cohomology, computing connectivity and truncatedness, forming Postnikov
towers, looking for delooping and stabilization, etc. The archetypical ∞-topos is the category Grpd∞ of
∞-groupoids. The full subcategory of (n− 1)-truncated objects in an ∞-topos form an n-topos.

Analogous to Definition 1.1.6, a Grothendieck ∞-topos can be defined as a left exact localization of
a presheaf category

E ↪→ Psh(C) := Fun(C,Grpd∞).

In the context of ∞-category theory we can also state the Giraud axioms, with the only change that
notion of effective epimorphisms is upgraded to that of effective groupoids.

3.1 Third Giraud axiom and principal bundles
Groupoids are generalizations of equivalence relations in the context of ∞-category theory. A groupoid
object in an ∞-category C is a simplicial object G : ∆op → C such that the natural map

Gn → G1 ×G0
× · · · ×G0

G1

is an equivalence for every n ≥ 1. The object G0 is the “set of vertices” of the groupoid.
In accordance with the classical observation that a group is a one-object groupoid, a group object in

an ∞-category C is a groupoid object G with an equivalence G0 ' 1. We call G1 the underlying object of
G, and denote it by G.

For G a groupoid object, the object colimG may be thought of as a quotient of G0 obtained by gluing
along the morphisms of G, a generalization of the “quotient by equivalence relation” operation.

To any morphism P → X in C is associated a groupoid object

Č(P → X) = · · · P ×X P ×X P P ×X P P

called the Čech nerve. A morphism P → X is called an effective epimorphism if it is the quotient
projection of its own Čech nerve:

colimČ(P → X)
'−→ X.

The third Giraud axiom for ∞-toposes says

Groupoids are the same as effective epimorphisms.

Specifically, we require every groupoid object G in C to be equivalent to the Čech nerve of its quotient
projection G0 → colimG.

A remarkable consequence of the third Giraud axiom is the classification of principal G-bundles by
the classifying space BG, shown in [7]. The idea is the following. A group object G is by definition the
action groupoid ∗//G of G acting on a point. The delooping BG is defined to be the quotient object of
∗//G, which satisfies ΩBG ' G by the third Giraud axiom. A principal G-bundle P → X over X is an
action groupoid P//G whose quotient projection is P → X, giving a morphism of groupoids P//G→ ∗//G
and thus a morphism X → BG.
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3.2 Internal language of ∞-topos
It is believed ([3]) that the internal language of ∞-toposes can be given by Homotopy type theory (HoTT,
described in the amazing textbook [6]).

Identity types. A crucial feature of HoTT7 is the internal expression of identities using identity types
allowing equality to be not a mere proposition8. For every two elements a, b of a given type A there is
an identity type a =A b, whose elements are thought of as

• proofs that a and b are equal;

• paths from point a to point b in a space A.

Groupoids (and later ∞-groupoids) give the first model of a type theory with nontrivial identity types,
as there can be more than one paths in a groupoid from one point to another, even up to homotopy.

The elimination rule of identity types is called path induction. It says

• Given a type family B(x, y, z) depending on x, y : A and z : x =A y, to construct an element of
B(x, y, z) it suffices to construct for each x : A an element d(x) : B(x, x, reflx).

In particular,

• To prove something about an identity z : x =A y, we may assume WLOG that y is definitionally
equal to x and z is just reflx.

The path induction is used throughout HoTT to define, for instance, the concatenation of paths∏
x,y,z:A

(x = y)× (y = z) → (x = z).

Simply put, given a path p : x = y, to construct from q : y = z an element p · q : x = z, we may assume
z is definitionally equal to y and q is just refly.

In model category9 models of HoTT, identity types are modelled by path objects

(s, t) : AI → A×A,

which is a replacement of the diagonal

(id, id) : A→ A×A

by a fibration. Fibrations are the interpretation of type families in model category models ([5]).
In model category (or ∞-category) models, path induction is justified by the following fact.
TODO

Proposition as types. Unlike first-order logic, HoTT carries its own deduction system by interpreting
propositions as types. Propositional calculus is thus encoded by type operations:

Type theory Logic
type A proposition
element a : A proof
dependent type B(x) predicate
0 false
1 true
A+B A or B
A×B A and B
A→ B (function type) A implies B∑

x:AB(x) there exists x : A such that B(x)∏
x:AB(x) for all x : A we have B(x)

a =A b a = b

7To be more specific, the so-called intensional type theories
8A mere proposition is a (−1)-truncated type.
9A model category is a 1-category with some extra information (such as a class of weak equivalences, a class of fibrations

etc.) that presents an ∞-category.
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Proving a proposition is the same thing as constructing an element of the corresponding type, for
instance

• proving “A or B” is equivalent to constructing an element of A+B, which is either an element of
A or an element of B (note the conformity to constructivism);

• proving “A and B” is equivalent to constructing an element of A×B, which is a pair (a, b) consisting
of an element a : A and an element b : B;

• proving “A implies B” is equivalent to constructing a function f : A → B which, given any proof
of A, returns a proof of B.

It is argued in [6] that untruncated logic (i.e. representation of propositions by general types instead of
(−1)-truncated ones) is sometimes closer to our intuition when we reason informally about mathematics.
For instance, in this kind of logic,

Whenever you prove something exists, the proof already contains an algorithm to find such a thing.

This is impossible in classical logic. However in practice, when we prove the existence of some object x
and later use x in further deduction, often times we are not using the fact that it merely exists; we are
using the construction of x.

Σ-types and Π-types. The HoTT expressions of existential and universal quantifiers are respectively
called Σ-types and Π-types. For B(x) a family of types parametrized by x : A (interpreted as a “bundle”
B → A), the Σ-type

∑
x:AB(x) is

• the collection of pairs (a, b) where a : A and b : B(a),

• the internal expression of the statement “there exists x in A such that B(x).”

while the Π-type
∏

x:AB(x) is

• the collection of sections of the bundle B → A (i.e. “functions” f assigning an element f(a) = b :
B(a) to every a : A),

• the internal expression of the statement “for all x in A we have B(x).”

Any ∞-topos (in particular, any topos) E interprets Σ-types and Π-types via the adjoint triple

E/A E ,

A!=
∑

A

A∗=
∏

A

A∗=A×−

a
a

a consequence of being a cartesian closed category. The functor
∑

A : E/A → E (the “dependent sum”)
simply sends an object f : B → A in E/A to the object B in E . The functor

∏
A : E/A → E (the “dependent

product”) can be defined in the internal language as the “set of sections”∏
A

(f : B → A) = {s : A→ B | fs = idA}

which is externally the pullback ∏
A f BA

1 AA.

fA

idA

Example 3.2.1. The internal statement saying that there is a unique element in a type A is∑
a:A

∏
x:A

x = a,
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which literally means “there exists some a in A such that for all x in A we have x = a.” Externally
this statement means only that A is path-connected, that any point x of A is connected to some fixed
point a. But internally this means A is contractible to the point a! One possible explanation is that a
proof of

∏
x:A x = a requires a continuous choice of path from x to a as x varies along A, resulting in

a deformation retract of A to a point. In an ∞-topos model of HoTT, a proof that there is a unique
element in A is a section of the left vertical map in the pullback∏

x:A x = a A

A A×A,

(id,id)

x 7→(a,x)

and equivalently a homotopy from idA to the constant map a.

3.3 Cohomologies
Sheaf cohomology can produce good invariant on “bad” spaces where other approaches to cohomology
fail. Homotopy theory, which studies ∞-groupoids (also called homotopy types), gives an clean theory of
cohomology. Therefore it is natural to believe that sheaves of ∞-groupoids, and more generally, objects
of an ∞-topos, are good objects to define cohomologies.

Definition 3.3.1 (nonabelian cohomology, general abstract definition). In an ∞-category C, the coho-
mology of an object X with coefficients in A is the homotopy class of maps from X to A:

H(X,A) := π0 HomC(X,A).

This is called nonabelian cohomology, which is conceptually simpler than it sounds; in the following we
will see familiar cohomologies are all special cases of this concept. If the object A admits an n-fold
delooping10 BnA, then we may define the n-th cohomology of X with coefficients in A to be

Hn(X,A) := π0 HomC(X,B
nA).

Denote by Grpd∞ the ∞-category of ∞-groupoids.

Example 3.3.2 (ordinary cohomology). For good spaces X (e.g. CW complexes), the ordinary coho-
mology of X with coefficients in an abelian group A is

Hn(X,A) ' π0 HomGrpd∞(X,K(A,n)).

Note that K(A,n) is an n-fold delooping BnA of the abelian group A.

Example 3.3.3 (sheaf cohomology). For F a sheaf of abelian groups on a space X, the sheaf cohomology
of X with coefficients in F is

Hn(X,F ) ' π0 HomShGrpd∞ (X)(X,B
nF ),

where X denotes the terminal object of the ∞-category ShGrpd∞(X) of sheaves of ∞-groupoids on X.
By the Dold–Kan correspondence we can regard BnF as a complex of sheaves of abelian groups, and
the above set becomes

π0 HomShCh(Ab)(X)(Z, BnF )

(Z being the constant sheaf of integers) which is the traditional definition of sheaf cohomology in the
derived category of abelian sheaves on X.
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