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1 Spectra
First we give a quick review of the abstract properties of spectra we will need.

Spectra are stabilized spaces; the ∞-category of spectra is

Sp = lim(· · · Ω→ Spc∗
Ω→ Spc∗),

so a spectrum can be represented by a sequence of pointed spaces {Xn}n≥0

with equivalences Xn ≃ ΩXn+1. A spectrum X has homotopy groups of every
integer degree: if X is represented by {Xn}n≥0, then we can define

πk(X) := πn+k(Xn) (n+ k ≥ 0).

The category Sp is a closed symmetric monoidal category with tensor prod-
uct ∧ inherited from the smash product ∧ on Spc∗, and there are symmetric
monoidal functors

(Spc,×)
(−)+−→ (Spc∗,∧)

Σ∞

−→ (Sp,∧).

Their composition is denoted Σ∞
+ . Therefore the tensor unit of Sp is the sphere

spectrum S := Σ∞S0 = Σ∞
+ (pt). The infinite loopspace functor Ω∞ : Sp → Spc∗

is the right adjoint of Σ∞.
The inner hom [X,Y ] in Sp is called the mapping spectrum, and is presented

by the sequence {HomSp(Σ
−nX,Y )}. The inner hom and the tensor product

satisfy the adjunction relation

[X ∧ Y, Z] ≃ [X, [Y, Z]]

and in particular

HomSp(X ∧ Y, Z) ≃ HomSp(X, [Y, Z]).

For any spectrum X, we have [S, X] ≃ X. For two spectra X,Y we have

Ω∞[X,Y ] ≃ HomSpc∗(S
0,Ω∞[X,Y ])

≃ HomSp(S, [X,Y ])

≃ HomSp(X,Y ).
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A ring spectrum is a commutative algebra in (Sp,∧).
A spectrum E determines a homology theory E∗ and a cohomology theory

E∗:

• E∗(X) := π∗(Σ
∞
+ X ∧ E),

• E∗(X) := π−∗[Σ
∞
+ X,E] ≃ π0 HomSp(Σ

∞
+ X,Σ∗E)

In particular,
E∗(pt) = π∗(E) = E−∗(pt).

Sometimes we denote π∗(E) by E∗ or E−∗. For a ring spectrum E, E∗ is an
ordinary commutative ring.

1.1 Thom spectra
Let ξ : V → X be a vector bundle of rank d. The Thom space Xξ is the (pointed)
homotopy type

Xξ := cofiber(V \X → V ).

Example. The Thom space of a trivial vector bundle X × Rd is just Σd
+X.

The Thom spectrum of ξ is

Th(ξ) := Σ−dΣ∞Xξ.

Thom spaces and Thom spectra have the following properties.

• (Functoriality) For f : Y → X there are natural maps Y f∗ξ → Xξ and
Th(f∗ξ) → Th(ξ);

• (Monoidality) (X × Y )ξ⊞η ≃ Xξ ∧ Y η, and Th(ξ ⊞ η) ≃ Th(ξ) ∧ Th(η);

• (Stability) Xξ⊕R ≃ ΣXξ, and Th(ξ)⊕ R ≃ Th(ξ).

Since Th is invariant under adding trivial bundles, we may define Thom
spectra for virtual bundles, which are locally formal differences of vector bundles.
The spectrum MU is the Thom spectrum of the universal virtual bundle on
BU = colimn BU(n). Equivalently, let MU(n) be the Thom spectrum of the
universal bundle on BU(n), then

MU ≃ colimn MU(n).

1.2 Complex oriented ring spectra
For a ring spectrum E we want to assign a Thom class

Uξ ∈ E2n(Xξ) ≃ π0 HomSp(Th(ξ), E)

to any complex vector bundle ξ : V → X, satisfying the following conditions.
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• (Giving orientation on fibers) For each point x ∈ X, E2n(Xξ) → E2n(ptξ) ≃
E0(pt) sends Uξ to 1;

• (Pullback compatibility) Uf∗ξ = f∗Uξ;

• (Multiplicativity) Uξ⊕η = Uξ · Uη;

A ring spectrum with the above structure is called a complex oriented ring spec-
trum. To see exactly what we need for such a structure, consider the universal
complex line bundle γ on CP∞. It should give a class Uγ ∈ E2((CP∞)γ) that
restricts to 1 ∈ E2(ptγ).

However, observe that the map CP∞ → (CP∞)γ happens to be an equiva-
lence, because if we remove the zero section from the total space of γ it becomes
a contractible space. Thus1 we can reformulate the desired structure as the
following

Definition. A complex oriented ring spectrum (E, xE) is a ring spectrum E
with a class xE ∈ E2(CP∞) restricting to 1 ∈ E2(CP 1).

Proposition. The ring spectrum MU is complex oriented.

For any complex vector bundle ξ : V → X, let χ : X → BU be its classifying
map, then the functoriality of Th gives a map

Th(ξ) → MU.

1.3 Chern classes
Let (E, xE) be a complex oriented ring spectrum. Let L → X be a complex line
bundle with classifying map χ : X → CP∞. The first Chern class of L is

cE1 (L) := χ∗xE ∈ E2(X).

2 Complex cobordism and MU
A stable almost complex structure on a manifold M is a complex structure on
TM ⊕ RN for N sufficiently large.

Theorem (Pontryagin–Thom). MU∗ is the ring of bordism classes of man-
ifolds with stable almost complex structure. More generally, MUn(X) is the
bordism group of n-manifolds with a stable almost complex structure and a
map to X.

1There remains a problem as to determine what the relevant map CP 1 → CP∞ is. I don’t
know why, but we assume that this map is just the usual inclusion.

3



3 Formal group laws
3.1 The formal affine line
A formal group law over a commutative ring R is a (commutative) group struc-
ture on the formal affine line Â1

R with the origin being the unit. Concretely, it
is a map F : Â1

R × Â1
R → Â1

R, i.e. a two-variable formal power series F (X,Y ),
satisfying

• F (X, 0) = X = F (0, X),

• F (F (X,Y ), Z) = F (X,F (Y, Z)),

• F (X,Y ) = F (Y,X).

The invariant differential form of a formal group law F is

ω(X) :=
dX

∂2F (X, 0)
.

3.2 Logarithm
A logarithm of a formal group law F is a series ℓ(X) = X + a2X

2 + · · · over
R×Q such that

ℓ(F (X,Y )) = ℓ(X) + ℓ(Y ).

It defines an isomorphism from F (after tensoring with Q) to the additive formal
group law.

An important result in the paper is the logarithm of the formal group law
associated with complex cobordism theory.

Taking the derivative at Y = 0, we get

ℓ′(X)∂2F (X, 0) = 1.

Thus the logarithm can be determined by

ℓ′(X)dX = ω(X), ℓ(0) = 0.

3.3 Curves
In this context, a curve refers to a self-map of Â1

R preserving the origin, or
equivalently a formal power series

f(X) = a1X + a2X
2 + · · ·

with no constant term.
The group structure F on Â1

R induces operations on curves:

(f +F g)(X) := F (f(X), g(X)).
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4 The formal group law of a complex oriented
ring spectrum

A complex oriented ring spectrum (E, xE) defines a formal group law FE over
E∗(pt) satisfies the relation

FE(cE1 (L1), c
E
1 (L2)) = cE1 (L1 ⊗ L2)

where L1, L2 are arbitrary complex line bundles on a space X.
To define FE , consider the universal pair of complex line bundles, which is

the two pullbacks of the universal complex line bundle γ on CP∞ to CP∞ ×
CP∞. Their tensor product is the line bundle γ ⊠ γ on CP∞ × CP∞. Let
χ : CP∞ × CP∞ → CP∞ be the classifying map of γ ⊠ γ. Since E∗(CP∞ ×
CP∞) = E∗(pt)[[X,Y ]] (X,Y being on degree 2), the pullback χ∗xE ∈ E2(CP∞×
CP∞) is a power series

∑
akℓX

kY ℓ with akl ∈ E2−2k−2ℓ(pt).

The input to Qullen’s paper is the following special case of a theorem.

Theorem. Let L be the canonical line bundle on CPn and u be a polynomial
over MU∗. Then the Gysin homomorphism π∗ : MUq(CPn) → MUq−2n(pt) is
given by

π∗(u(c
MU
1 (L))) = res

u(X)ω(X)

Xn+1

Taking u = 1, we get

Corollary. The coefficient of XndX in ω(X) is [CPn].

Corollary. The logarithm of FMU is

ℓ(X) =
∑
n≥0

[CPn]

n+ 1
Xn+1.

5 The universal nature of cobordism group laws
Theorem. For any formal group F over a commutative ring R, there is a
unique homomorphism MU∗(pt) → R carrying FMU to F .

Quillen’s proof of the above result uses two previously known facts:

• Lazard (1955) had determined the ring L over which the universal formal
group law is defined,

L ≃ Z[x1, x2, · · · ]/;

• Milnor and Novikov (1960) had determined the structure of the ring MU∗,

MU∗ ≃ Z[x1, x2, · · · ] (deg(xi) = 2i).
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Given Lazard’s result, the theorem can be stated as follows: the ring homo-
morphism h : L → MU∗ giving FMU is an isomorphism.

Proof that h⊗Q is an isomorphism.

• L⊗Q ≃ Q[p1, p2, · · · ].

• h(pi) = [CP i].

• MU∗ ⊗Q ≃ Q[[CP 1], [CP 2], · · · ].

Suppose the logarithm of the universal formal group law over L is∑
n≥0

pn
n+ 1

Xn+1.

Then the law over L⊗Q is universal for laws over Q-algebras. Observe that any
law over a Q-algebra is uniquely determined by its logarithm which can be any
series with leading term X; so h sends pi to [CP i] and h⊗Q is an isomorphism.

Proof that h is an injection.

• L ≃ Z[x1, x2, · · · ].

• In particular, L is torsion-free.

Proof that h is a surjection.

• pn ∈ L (because pn is the coefficient of Xn in), so [CPn] ∈ h(L).

• For
Mn ⊂ CPn1 × · · · × CPnr

a nonsingular hypersurface of degree k1, · · · , kr, [Mn] is contained in the
image of h.

Denote by π the map from Mn to a point, and by Lj the pullback of the
tautological line bundle on the j-th factor. Then

[Mn] = π∗c
MU
1 (Lk1

1 ⊗ · · · ⊗ Lkr
r ) (using the input lemma on Gysin homomorphism)

= π∗
(
k1c

MU
1 (L1) + · · ·+ krc

MU
1 (Lr)

)
(in the sense of FMU)

= π∗
∑

i1,··· ,ir

π∗(ai1···ir )c
MU
1 (L1)

i1 · · · cMU
r (Lr)

ir , ai1···ir ∈ h(L)

Since

π∗c
MU
1 (L1)

i1 · · · cMU
r (Lr)

ir =

r∏
j=1

[CPnj−ij ]

is also in h(L), it follows that [Mn] ∈ h(L).
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6 p-typicality
Given a formal group law F , a curve f(X) and a positive integer n, let

(Fnf)(X) =

n∑
i=1

F f(ζiX
1/n).

Here
∑

F means addition defined by the formal group law F , and ζi are the
n-th roots of 1. A priori this is a power series over R[ζ], but by symmetry it is
actually over R.

Example. When F is the additive law and f(X) = a1X + a2X
2 + · · · , we

have (Fnf)(X) = nanX + 2na2nX
2 + · · · .

Definition. Given a formal group law F , a curve f is called p-typical if Fqf =
0 for every prime q ̸= p. A formal group itself is called p-typical if the curve
f(X) = X is p-typical.

Example. When F is the additive law, a curve f is p-typical iff f(X) has the
form apX

p + ap2Xp2

+ · · · .

If R is a Z(p)-algebra and is torsion-free, then a curve f is p-typical iff the
series ℓ(f(X)) over R⊗Q has only terms of degree a power of p, where ℓ is the
logarithm of F .

7 Decomposition of MU(p)

In 1966 Brown and Peterson showed that after localization at a prime p, MU
splits into a wedge of smaller spectra now known as BP and denoted by Quillen
as ΩT . This splitting is suggested by a corresponding decomposition of H∗MU
as a module over the mod p Steenrod algebra.

Quillen gave a much cleaner form of the splitting using some algebra devel-
oped by Pierre Cartier. He thereby showed that BP is a ring spectrum.

Cartier showed that when R is a Z(p)-algebra, there is a canonical coordinate
change that converts any formal group law into a p-typical one. Quillen used
this to define an idempotent map ξ̂ on MU(p) = MU ⊗ Z(p) whose telescope is
BP.

This process changes the logarithm from

∑
n≥0

[CPn]

n+ 1
Xn+1 to

∑
k≥0

[CP pk−1]

pk
Xpk

.

Fix a prime p and let R be a Z(p)-algebra, meaning that we can divide by
any integer n prime to p.
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Theorem (Cartier). A formal group law over R is canonically strictly isomor-
phic to a p-typical one.

To prove this, it suffices to construct a strict isomorphism from the law over
L⊗ Z(p) to a typical law.

Construction. Let cF be the curve given by

c−1
F =

∑
(n,p)=1

µ(n)

n
VnFnγ0,

where γ0 is the curve γ0(X) = X, Vn is the operation taking a curve f to
f(Xn), the sum as well as division by n prime to p is taken in the filtered group
of curves and µ is the Möbius function.

Proposition. The group law

(cF∗F )(X,Y ) = cF (F (c−1
F X, c−1

F Y ))

is typical.

Proposition-definition. Let ξ = cFMU ; it is a power series over MU∗
(p) with

leading term X. There is a unique multiplicative natural transformation (i.e. ho-
momorphism of ring spectra) ξ̂ : MU∗

(p)(−) → MU∗
(p)(−) such that

ξ̂cMU
1 (L) = ξ(cMU

1 (L))

for all line bundles L.

Proposition. The operation ξ̂ is idempotent, and its values on MU∗
(p)(pt) are

ξ̂([CPn]) =

{
[CPn] if n = pa − 1

0 otherwise.

Let BP∗(X) be the image of ξ̂. Then the following are pushout diagrams of
commutative rings.

MU∗
(p)(pt) BP∗(pt) MU∗

(p)(pt) BP∗(pt)

MU∗
(p)(X) BP∗(X) MU∗

(p)(X) BP∗(X)

8



8 Operations on BP∗

In two pages, Quillen gave a precise description of the graded algebra of maps
from BP to itself.

The surjection ξ̂ : MU∗
(p) → BP∗ carries the Thom class in MU∗

(p)(MU) to
one for BP∗. As a consequence BP has the usual machinery of characteristic
classes with cBP

i (−) = ξ̂cMU
i (−), and fBP = ξ̂FMU.

Let t1, t2, · · · be formal variables and t0 = 1. Consider the series

ϕt(X) =
∑
n≥0

FBP

tnX
pn

.

There is a unique morphism of ring spectra ϕ̂−1
t : MU → BP[t1, t2, · · · ] such that

ϕ̂−1
t (cMU

1 (L)) = ϕ−1
t (cBP

1 (L))

for all line bundles L.
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