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Conventions

We use an intrinsic and model-independent language for
∞-categories, in which

a 1-category is automatically regarded as an ∞-category.
all functors, limits and colimits are ∞-category-theoretical.

Some notations:
H denotes a fixed (Grothendieck) ∞-topos;
H→ denotes the arrow category Fun({∗ → ∗},H);
H∗/ denotes the category of pointed objects of H;
H

∗/
≥1 the category of pointed connected objects of H.
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Introduction to ∞-toposes
A topos is a category in which we can do set theory; we can
perform in a topos everything we do on sets.
Subsets from logical formulas, quotients by equivalence
relations, sets of functions, ...
The archetypical topos is Set.

An ∞-topos is an ∞-category in which we can do homotopy
theory; we can perform in an ∞-topos everything we do on
spaces.
Homotopy groups, cohomology, connectivity, truncatedness,
Postnikov towers, delooping, stabilization, ...
The archetypical ∞-topos is Grpd∞.
The full subcategory of (n− 1)-truncated objects in an
∞-topos form an n-topos.



Principal ∞-bundles and ∞-topos theory
Introduction to ∞-toposes

Grothendieck toposes

Definition (Grothendieck topos)
A Grothendieck topos is a left exact localization1 of a presheaf
category.

The definition is verbatim the same in ∞-category theory and
gives Grothendieck ∞-toposes. Note that a presheaf category in
this context is Fun(Cop,Grpd∞).

1A left exact localization is a fully faithful functor with a left adjoint that
preserves finite limits.
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Giraud axioms

The Giraud [ ʒiʁo ] axioms are a characterization of toposes in
terms of category-theoretical properties.

Definition (Giraud axioms)
A presentable category C is said to satisfy the Giraud axioms if

1 colimits in C are universal (i.e. stable under pullback);
2 coproducts in C are disjoint;
3 quotients in C are effective epimorphisms (i.e. coequalizers).

These conditions all have analogs in ∞-category theory, and form
the ∞-Giraud axioms. To state the third condition in
∞-categorical terms, we need groupoid objects.
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Groupoids and groups

Definition (groupoid object)
A groupoid object in an ∞-category C is a simplicial object
G : ∆op → C such that the natural map

Gn → G1 ×G0 × · · · ×G0 G1

is an equivalence for every n ≥ 1. The object G0 is the “set of
vertices” of the groupoid. We also call G a groupoid object over G0.
Denote by Grpd(C) the full subcategory of Fun(∆op, C) spanned
by groupoid objects.
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Groupoids and groups

Definition (group object)
A group object 2 in an ∞-category C is a groupoid object G with
an equivalence

G0 ≃ 1.

We call G1 the underlying object of G, and denote it by G. By
abuse of notation we also speak of a group object G.
Denote by Grp(C) the full subcategory of Fun(∆op, C) spanned by
group objects.

2This involves a special case of the delooping hypothesis. Group objects can
also be defined as A∞-algebras, and by delooping, they are equivalent to this
definition (at least in ∞-toposes).
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Groupoids and groups

The concept of group(-oid) objects in an ∞-category generalizes
that of ordinary group(-oid) objects in a 1-category.

A group object in Set is an ordinary group.
A group object in Mfd is a Lie group.
A group object in Grpd∞ is an ∞-group, or equivalently an
A∞-algebra.
A groupoid object in Sh(Mfd,Grpd∞) is called a smooth
∞-groupoid.
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Groupoids and groups

For G a groupoid object, the object colimG may be thought of as
a quotient of G0 obtained by gluing along the morphisms of G.

Definition (quotient projection of a groupoid object)
For a groupoid object G in an ∞-topos H, The natural map to the
colimit

G0 → colimG

is called the quotient projection of the groupoid object.
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Groupoids and groups

By definition of colimits, there is an adjunction

H Grpd(H)
const

colim

⊣
that exhibits H as a reflective subcategory of Grpd(H).
The functor colim in this context is also called the realization.
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Groupoids and groups

Definition (Čech nerve, effective epimorphism)
Let C be an ∞-category with pullback. To any morphism P → X
in C is associated a groupoid object

Č(P → X) = · · · P ×X P ×X P P ×X P P

called the Čech nerve.
A morphism P → X is called an effective epimorphism if it is the
quotient projection of its own Čech nerve:

colimČ(P → X)
≃−→ X.
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Čech nerve and quotient projection

The Čech nerve as a right Kan extension:

∆+ =
{
· · · [1] ⇔ [0]← [−1]

}
{
[0]← [−1]

}
∆ =

{
· · · [1] ⇔ [0]

}
Fun(∆op

+ ,H)

H→ Fun(∆op,H)

res.
res.R. Kan

Č

L. Kan (=colimit cocone)

quot. proj.

⊣ ⊣

⊣
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Čech nerve and quotient projection

Here are some side remarks.
In general, for any morphism f : U → X, colimČ(f)→ X is
called the image of f . The sequence U → im(f)→ X is
called the (epi, mono)-factorization of f , a special case of the
(n-connected, n-truncated)-factorization when n = −1.
im(f) is the (−1)-truncationof f in C/X . In other words, it is
the smallest subobject of X through which f can factor.
Of course, f is an effective epimorphism if and only if
im f = idX .
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Giraud axioms for ∞-toposes

Definition
A presentable ∞-category C is said to satisfy the Giraud axioms if

1 colimits in C are universal;
2 coproducts in C are disjoint;
3 every groupoid object in C is equivalent to the Čech nerve of

its quotient projection.

Theorem (HTT 6.1.0.6)
An ∞-category is an ∞-topos if and only if it satisfies the Giraud
axioms.
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Giraud axioms for ∞-toposes

The third Giraud axiom requires the Čech nerve–quotient
projection adjunction to restrict to an equivalence of full
subcategories:

H→ Fun(∆op,H)

H→
eff Grpd(H),

Č

quot. proj.

⊣
≃

the two subcategories being the essential images of the two
adjoint functors.
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Looping and delooping

For any pointed object X ∈ H∗/, the loopspace ΩX = ∗×X ∗
admits a group structure given by the Čech nerve of ∗ → X,

ΩX = Č(∗ → X), (ΩX)n = ∗ ×X · · · ×X ∗ (n+ 1 points).

The loopspace functor Ω: H∗/ → Grp(H) fits into the
diagram

H→ Grpd(H)

H∗/ Grp(H).

Č

Ω
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Looping and delooping

Lemma (proved in HTT 7.2.2.11)
Let X ∈ H∗/ be a pointed object. The map ∗ → X is an effective
epimorphism if and only if X is connected. In particular we have a
full subcategory

H
∗/
≥1 ↪→ H→

eff.

Lemma (HTT 7.2.1.14)
A morphism f : X → Y in an ∞-topos H is an effective
epimorphism if and only if its truncation τ≤0f : τ≤0X → τ≤0Y is
an effective epimorphism in the underlying 1-topos hτ≤0H.

In particular, a map f : X → Y in Grpd∞ is an effective
epimorphism if and only if π0f : π0X → π0Y is a surjection.
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Looping and delooping

The functor Ω restricted to H
∗/
≥1 ↪→ H→

eff gives an equivalence. Its
inverse B is called delooping.

H→
eff Grpd(H)

H
∗/
≥1 Grp(H)

Č

quot. proj.

Ω

B

≃

≃

The equivalence G ≃ ΩBG gives a fiber sequence

G→ ∗ → BG.
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Classifying Spaces

Fix an ∞-topos H. Let X be an object of H and G be a group
object of H. The aim of this section is to state and prove the
equivalence (of ∞-groupoids)

GBund(X) ≃ H(X,BG).
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G-actions

Definition (G-action)
A G-action on an object P is a groupoid object P//G of the form

P//G = · · · P ×G×G P ×G P
ρ

pr1

such that the projection maps

· · · P ×G×G P ×G P

· · · ∗ ×G×G ∗ ×G ∗

constitute a morphism P//G→ ∗//G of groupoid objects.
The corresponding quotient object of the G-action is the colimit of
the groupoid object.
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G-actions

Definition
The G-actions form a full subcategory

GAct(H) ↪→ Grpd(H)/(∗//G).

The groupoid object ∗//G is G “itself” (regarded as a
groupoid object over ∗). Its quotient object of ∗//G is by
definition BG.
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Principal G-bundles

Definition (principal G-bundle)
A principal G-bundle over X is a morphism P → X with a
G-action on P whose quotient object is X.

The traditional requirement of freeness is not a
characterization of principality, but a condition that ensures
that the base is a 0-truncated object. In the context of
∞-topos, every action is a principal bundle over its quotient.
Local triviality is also automatic: a principal G-bundle P → X
is always a cover (effective epimorphism), and it trivializes
itself. We will see later.
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Principal G-bundles

The Giraud axiom dictates that, for any principal G-bundle
P → X there is an equivalence of groupoid objects

P//G ≃ Č(P → X).

This corresponds to the traditional requirement that the shear
map P ×G→ P ×X P is an equivalence.
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Principal G-bundles

Definition
The category of principal G-bundles over X is

GBund(X) := GAct(H)×H {X}.
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Classifying maps

Proposition
For f : X → BG any morphism, its (homotopy) fiber P → X is
canonically a G-principal bundle.

Pull back (∗//G)→ BG along f to get (P//G)→ X.

· · · P ×G×G P ×G P X

· · · ∗ ×G×G ∗ ×G ∗ BG

f

∆op H H/BG H/X
∗//G

P//G

p∗ f∗

Using the fact (first Giraud axiom) that f∗ preserves colimits,
we have colimP//G ≃ X, so P → X is a G-principal bundle.
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Classifying maps

This defines a map

H(X,BG)→ GBund(X).
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Trivial G-bundles

Definition (trivial G-bundle)
The trivial G-bundle on X is the one obtained from the morphism
X → ∗ → BG.

X ×G G ∗

X ∗ BG
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Local triviality of principal G-bundles

Proposition (local triviality)
For any principal G-bundle P → X, there exists an effective
epimorphism U → X such that the pullback bundle of P → X
over U is trivial.

The proof just takes U = P . What’s important is the
existence of the cover U → X, not its actual structure.
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Classifying maps

Every principal G-bundle on X comes from a pullback along
X → BG.
Proposition
For every principal G-bundle P → X the rightmost square in

· · · P ×G×G P ×G P X

· · · ∗ ×G×G ∗ ×G ∗ BG

f

is a pullback.

The proof uses a “local-to-global” argument.
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Classifying maps

Lemma (effective epis reflect equivalences)
Consider the following pullback diagram in an ∞-topos.

A B

A′ B′

φ

≃

φ′

Suppose ϕ′ (and moreover, ϕ) is an effective epimorphism, and the
left map is an equivalence, then the right map is also an
equivalence.

Intuition: ϕ is a cover, and the condition says B is locally
equivalent to B′.
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Classifying maps

We take the Čech nerves Č(ϕ) and Č(ϕ′):

· · · A×B A×B A A×B A A B

· · · A′ ×B′ A′ ×B′ A′ A′ ×B′ A′ A′ B′

φ

φ′

All vertical arrows to the left of A→ A′ are pullbacks of
A→ A′, and are thus equivalences. The conclusion follows
from the functoriality of colimits.
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Classifying maps

Lemma (effective epis reflect pullbacks)
Consider the following diagram in an ∞-topos.

A B C

X Y Z
f

Suppose f is an effective epimorphism, and the left square and the
outer rectangle are pullbacks. Then the right square is also a
pullback.

Intuition: f is a cover, and the condition says B is a pullback
locally on Y .
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Classifying maps

Take B′ = Y ×Z C and A′ = X ×Y B′:
(all parallelograms are pullbacks)

A B

A′ B′ C

X Y Z

≃

f

A→ A′ is an equivalence.
A′ → B′ is an effective epimorphism.
The previous lemma then implies that B → B′ is an
equivalence.
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Classifying maps

Applying the lemma to the diagram

U ×G U

P X

∗ BG

gives the conclusion.
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Classifying maps

We have seen an equivalence

GBund ≃ Cart(H)→/(∗→BG) ×H {X}.

The latter is equivalent to H/BG ×H {X}, which is in turn
equivalent to H(X,BG).
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Group extensions

Fix a group G and an abelian group A. A group extension of
G by A is a short exact sequence of groups

1→ A ↪→ E ↠ G→ 1.

It is equivalently a fiber sequence

BA→ BE → BG,

or a principal BA-bundle over BG.
Such group extensions are classified by maps BG→ BBA, or
elements of the “second group cohomology” H2(G,A).
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Galois theory

An object A is called a Galois object if A is an Aut(A)-torsor.
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